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Capillary solution evaporation theory is presented, which incorporates crystal 
formation near the mouth when supersaturation is reached; high evaporation rates 
and high solution concentrations can result in a transient state, where the 
crystal size pulsates. 

An aqueous solution evaporating from a capillary for P0 < Pm produces a gradual increase 
in the nonvolatile-component concentration (e.g., salt) near the meniscus; the salt diffuses 
back into the capillary if the meniscus position is unchanged (by solution supply), and a 
stationary state occurs, with a certain constant value C m > C o [], 2]. 

At high evaporation rates, C m may exceed Cs, which leads to crystals being deposited, 
as observed for aqueous solutions of potassium dichromate in glass capillaries [3]. The 
crystals narrow the capillary, which reduces the evaporation rate and correspondingly the 
flow speed. However, a lower v corresponds to a smaller Cm, which may become less than C s, 
so the crystal partly dissolves. A crystal volume reduction again increases the evaporation 
rate, so the concentration rises again near the meniscus, which may cause the crystal to grow. 
The transition to the stationary state may involve crystal volume oscillations. 

The oscillating conditions may be established by considering the evaporation of an aque- 
ous salt solution (Fig. !); the meniscus is in a fixed position, which is provided, as in 
[3], by narrowing at the end and the liquid being drawn up to the mouth. The capillary com- 
municates with the vessel maintaining a constant concentration C o . The condition L >> r 0 al- 
lows one to neglect edge effects. 

Convection in the air near the mouth produces a diffusion layer, thickness s, within 
which the vapor pressure falls linearly from Pm to P0 [4]. The evaporation rate is then de- 
fined by the diffusion equation 

Dovm 
= - -  ( p ~  - -  p o ) .  ( 1 )  RT6 

The concentration distribution C~x) along the capillary is found by solving the con- 
vective-diffusion equation for the salt flux: 

ox + vc  . ( 2 )  
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Fig. i. Working scheme and 
salt concentration distribu- 
tion along capillary with 
subsaturation (i) and super- 
saturation (2) near the 
mouth (3 is the crystalliza- 
tion zone). 
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Capillary narrowing by a growing crystal 
for 7 = 2.4 (i); 4.8 (2); 7.2 (3). 

The boundary conditions are C(O) = Co, C(L) = C m and dC/dx(O) = O. 

If C m < C s, the salt flux in the stationary state is zero; the solution to (2) here 
gives for C m = constant the standard expression [I, 2] 

C~ = Coexp(~L/O). (3) 

Curve 1 in Fig. 1 shows the corresponding C(x); at higher evaporation rates, C m may attain 
Cs, which allows a crystal to form and grow; experiment shows that the crystallization is 
heterogeneous, at the capillary walls [3]. We assume for simplicity that a crystalline phase 
is formed as shown in Fig. 1 in a certain zone of constant length s The crystal is assumed 
to grow in layers, so the channel gradually narrows-to r < r 0. Then r 0 - r characterizes 
the layer thickness. The situation ceases to be stationary, since the crystal grows for a 
time t, so the flux Q, flow speed v, and radius of the free part r are functions of time. 

Here we give a solution for the growth beginning when C m becomes equal to C s at the end 
of zone s i.e., at x = L - s that state occurs after about At = 2CsD/3C0a 2, and during the 
subsequent evaporation, the concentration in s begins to exceed Cs, so a crystal can form 
and grow. 

The growing crystal reduces the evaporation area, so (2) is rewritten as 

Q==~r~[--Dt OCox -{-~C( r-f--)2] ro , (4) 

Here v is expressed in terms of the evaporation rate as the fluxes are equal: ~r~v = ~r2a; 
the evaporation flux is proportional to ~r 2, so any reduction in ~ reduces the flow speed. 
For each t, the solution to (4) in the quasistationary approximation for the salt flux to 
the meniscus is 

C s -  Co exp (~r~L/r~O) 
Om (0 = (~rz) 1 --  exp (~rZL/r~D) (5) 

Qm is a function of the current radius r(t); the boundary condition is that the concentration 
at the entry to the crystallization zone is equal to the saturation concentration C s = con- 
stant (curve 2, Fig. i). Qm(t) is consumed in altering the crystal mass M c and the dissolved 
substance mass M d in zone s C m there is taken as constant (matched zone 3 in Fig. i), so 
we have 

d(Me+ Yat) d l~(r~_r~)pl + ~r21C~(t)]. (6) 
(t)  = d t  = d t  

The growth rate in s is determined by the mass transfer coefficient 6: 

dr ~. [C~ (t) --  C$1. (7) 
d t  . . . .  p 

If C m equals Cs, the crystal is in equilibrium and dr/dt = 0; for Cm(t) # C s, the crys- 
tal either grows or dissolves. 

System (5)-(7) represents the volume change; we introduce dimensionless variables and 
parameters for convenience: z = r/r0; �9 = t/t0; where t o = 2ps y = Cm(t)/Cs; ~ = ~L/D; 
X = Cs/C 0 > i; e = Cs/P; v = Cs~t0/pr 0. Then (5)-(7) becomes 
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Fig. 3. Effects of v/e on growth kinetics for 7 = 4.6 
and ~ = i0: v/E = 0.5 (i); 1 (2); 2 (3). 

(%-- exp ?Z 2 ) z~ = z (8) 
-- z ( 1 -- ~9) q- -~ I -- exp ?z z ' 

= - - ~ ( u - -  1), (9) 

where z and y are the  f i r s t  d e r i v a t i v e s  with r e spec t  to x. The i n i t i a l  cond i t i ons  for  t h i s  
system are z(0) = I, z(0) = 0, and y(0) = i. 

We differentiate (9) with respect to x: ~ = -vy and substitute into (8) to get 

~z f 2~ ~[ exp(,z~)_~ ] ~ +  2~(1--~) i + 2 _ _ +  = o .  (1o) 
e z z ~ ~ ] exp (?zZ) - - I  

For x + ~, we get a stationary state, where y(~) = 1 and C m = C s = const; this is main- 
tained because the convective mass input to the meniscus is equal to the reverse diffusion 
flux, and then (7) shows the dr/dt = 0, which corresponds to an unchanging volume. This may 

be characterized by z(~) = ~(17u in ~ or r(~)/r 0 = ~(D/~L) in (Cs/C0) . 

We now consider how this stationary state may be approached. We solve (i0) numerically 
with the following parameters: v/s = 26ps = 0.5 and % = i0, which corresponds to a 
solution concentration C o less than C s by an order of magnitude. 

Figure 2 shows calculations on the narrowing during evaporation; the abscissa is the 
dimensionless time x and the ordinate z = r/r 0. Then there is no crystal for z = 1 and 

= 0: r = r 0. For x + ~, a constant-thickness layer is formed, which is governed by ~ = 
~L/D, which takes the values 2.4 (curve i), 4.8 (curve 2), and 7.2 (curve 3). Increase in 
the evaporation rate and/or capillary length under otherwise equal conditions raises the os- 
cillation amplitude. For ~ = 7.2, the channel is almost completely blocked (z = 0.18). In 
fact, it is found that the crystal rapidly fills the channel when the evaporation rate in- 
creases [3], while when 7 is less by only a factor 3 (curve i), the pulsations are almost 
inappreciable. With a low evaporation rate, a thin layer is sufficient to give the station- 
ary state. 

Figure 3 shows analogous z(x) curves illustrating the effects of v/e; when this in- 
creases, so does the pulsation amplitude, while the settling time lengthens. Here v/r char- 
acterizes largely the evaporation rate ~ and Co, since s should be of the order of r0, while 
p and ~ can be taken as constant, so we conclude that the transient oscillation is the more 
prolonged the lower the evaporation rate and the lower the initial concentration. 

We can now estimate the settling and blocking times; we take the initial KiCr=O 7 concen- 
tration such that ~ = i0, and as C s = 0.13 g/cm a, we take C O = 1.3.10 -2 g/cm s. With s = r 0 = 
10 -3 cm and p = 2.7 g/cm 3, we get the characteristic time as t o = 0.4/~. We derive ~ from 
(i) with the values for water: v m = 18 cma/mole, D O = 0.25 cmi/sec, and ~ = 0.i cm [4]. 
Laboratory conditions are assumed (P0/Pm = 0.5), with ~ = 2.10 -5 cm/sec, which gives t o as 
2.104 sec or about 5.5 h. With L = 7 cm, ~ = 2-I0 -s (with D = 2-i0 -s cmi/sec) corresponds 

to y = 7. For this ~ (curve 3 in Fig. 2), the channel should be blocked for t/t 0 = 1.2, 
i.e., in about 7 h. Experiment showed blocking in a day [3], but the measurements were made 
with a weaker solution (C O ! 5 "10-3 g/cm3), and Fig. 3 shows that this should increase the 
blocking time. 

Raised temperatures increase primarily the evaporation rate and should shorten the on- 
set of crystallization considerably. 

These solutions illustrate ways of controlling crystallization on evaporation from a 
capillary; to suppress crystallization, one has to reduce the evaporation rate or capillary 
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length and thus facilitate the diffusion of the nonvolatile component accumulating at the 
meniscus. The danger of crystals depositing will be the smaller the lower the initial con- 
centration. One can use (i0) to estimate the effects of all these factors. 

Crystals can form when C m rises to Cs; (3) shows that the crystallization condition can 
be put approximately as ~ ! (D/L) in Cs/C 0, which defines an evaporation rate above which 
crystals may be formed. 

NOTATION 

Co, initial concentration; Cm, concentration near meniscus; P0 and Pm, vapor partial 
pressures in the surroundings and above the meniscus; Cs, saturation concentration; L, capil- 
lary length; r 0, capillary radius; v, flow speed in capillary; e, volume evaporation rate 
from unit surface, cm/sec; Vm, molar volume of water; R, gas constant; T, temperature, K; 
Q, salt flux, g/sec; D, salt diffusion coefficient in solution; Do, vapor diffusion coef- 
ficient in air; t, time; p, crystal density. 
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EFFECTS OF GROWTH RATE PULSATIONS IN BULK-CRYSTALLIZATION OSCILLATIONS 

Yu. A. Buevich and I A. Natalukha UDC 541.48:66.065.5-51 

Weakly nonlinear periodic bulk crystallization conditions are examined in the 
presence of growth rate fluctuations. 

It has been shown [i] that bulk crystallization in a supersaturated or supercooled 
liquid can give rise to oscillations if the nucleation frequency has a markedly nonlinear 
relation to the metastability, where the transition to the oscillatory state occurs as a re- 
sult of normal Hopf bifurcation in the stationary states. It was assumed [i] that each crys- 
tal arising in the bulk grows monotonically without rate fluctuations, which is characteris- 
tic of many actual processes. However, recent measurements show that growth rates can fluc- 
tuate under certain conditions, which may be due to instability in external conditions, e.g., 
microscopic inhomogeneity or substances active in adsorption [2], or to various processes 
at the faces such as microrelief change [3] or alternation in defectiveness associated with 
Frank-Read sources periodically generating dislocation loops [4, 5]. When the growth-rate 
fluctuations are major, the crystallization acquires some novel features not explicable from 
the classical model [6, 7]. For example, instead of a monodisperse composition expected for 
heterogeneous crystallization on ready-made microcrystals of the same size (where nuclei do 
not arise by fluctuation), and where the nuclei are involved in growth immediately on intro- 
duction and grow without forming additional particles, one often gets a resultant distribu- 
tion with marked size variation [8], which indicates a spread in growth rates. Under certain 
conditions, the size curves tend to spread as time passes [2, 3, 9-11]. This is also not 
explicable from the classical theory. The model has been altered to incorporate rate pulsa- 
tions around the mean, which has explained [2, 3, 9] the distribution spread and the con- 
siderable positive skewness, as well as the deformation towards large sizes. 
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